

Treatment of Aqueous Effluents Contaminated with Ionic Liquids

Carlos F.C. Marques

Supervisors: João A. P. Coutinho and Mara G. Freire

Dep. de Química, Universidade de Aveiro, Portugal

Summary

1. Introduction

- 1.1 ILs Properties
- 1.2 ILs Applications
- 1.3 Work Motivations

2. Methods to remove ILs from Water

2.1 Water Treatment Methods2.2 Proposed Methods for Water Treatment

3. Materials and Results

- 3.1 Materials Adsorption
 3.2 Adsorption Results

 3.2.1 Alkyl side chain length
 3.2.2 Isomers

 3.3 Materials ABS
 3.4 ABS Results

 3.4.1 ABS measurements
 3.4.2 Recovery efficiency

 3.5 Process proposal
- 4. Conclusions
- 5. Future work

Property	ILs	
Chemical stability	High	
Thermal stability	High	"Designer
Nº of Combinations	> 10 ⁶	solvents"
Melting Temperature	Low	"0
Vapour Pressure	Low —	solvents"

1. Introduction 1.2 ILs – ILs applications

Toxicity tests with luminescent marine bacteria Vibrio fisheri (15 min)

*J. Kärkkäinen, Master Thesis, Department of Chemestry, University of Oulu, Finland, 2007.

Non-negligible solubility in water* (even

those considered hydrophobic) **M** ³²⁰ **L** 315 ≈ 0.72 wt % 310 Use in a 305 large scale leads to [C2mim][Ntf2] 300 [C3mim][Ntf2] aquatic [C4mim][Ntf2] 295 [C5mim][Ntf2] environmental [C6mim][Ntf2] 290 [C7mim][Ntf2] [C8mim][Ntf2] impact 285 0.0004 0.0008 0.0012 0.0000 0.0016 x_{T}

^{*}M. G. Freire, C. M. S. S. Neves, P. J. Carvalho, R. L. Gardas, A. M. Fernandes, I. M. Marrucho, L. M. N. B. F. Santos, and J. A. P. Coutinho, The Journal of Physical Chemistry B, vol. 111, pp. 13082-13089, 2007.

*P. T. Anastas, P. Wasserscheid, and A. Stark, *Handbook of Green Chemistry, Volume 6: Ionic Liquids*, 2010 **A. Kokorin, *Ionic Liquids: Theory, Properties, New Approaches*. InTech, 2011

2.1 Water treatment methods

^{*}T. P. Thuy Pham et al., *Water Research,* vol. 44, pp. 352-372, 2010 ^{**}A. Kokorin, *Ionic Liquids: Theory, Properties, New Approaches*. InTech, 2011 ^{***}C. Abrusci, et al., *Green Chemistry,* vol. 13, pp. 709-717, 2011 2.1 Proposed methods to water treatment

2. Methods to remove ILs

Adsorption for **Hydrophobic** ILs onto Activated Charcoal

Highly developed porosity

High surface area

Special surface reactivity

Highly inert

UThermally stable

PATh

2. Methods to remove ILs

2.1 Proposed methods to water treatment

Aqueous Biphasic Systems (ABS) for **Hydrophilic** ILs

Short processing time

Biocompatible

Low energy consumption

□Readily scaled up

IL – rich phase

Salt – rich phase

PATh

3. Materials and Results3.1 Materials - Adsorption

PATh

 $C_n C_1$ im series

R = 1, 2, 3, 4, 5, 6, 8, 12

R' = 1,2,3

Activated Charcoal

T = 308 K

bis(trifluoromethylsulfonyl)amide ► [NTf₂]⁻

3. Materials and Results 3.2.1 Adsorption – Alkyl side chain length

3.2.1 Adsorption – Alkyl side chain length

 $[C_{1}C_{1}im]^{+} < [C_{2}C_{1}im] C_{1}C_{1}C_{1}C_{2}C_{2}C_{1}im]^{+} < [C_{3}C_{3}C_{3}C_{1}C_{3}C_{1}im]^{+} < [C_{6}C_{1}im]^{+} < [C_{4}C_{1}im]^{+} < [C_{5}C_{1}im]^{+}$

PATh

3.2.2 Adsorption – Isomers

Comparison between $C_m C_m$ im series and $C_n C_1$ im series:

 $(*) \ [C_2im], \ (\diamond) \ [C_1C_1im]; \ b), \ (\bullet) \ [C_3C_1im], \ (\circ) \ [C_2C_2im], \ (\blacktriangle) \ [C_4C_1im], \ (\bigtriangleup) \ [C_2C_3im], \ (\blacklozenge) \ [C_5C_1im], \ (\diamond) \ [C_3C_3im].$

3.3 Materials- ABS

3.4.1 ABS – Measurements

Merchuk, J. C.; Andrews, B. A.; Asenjo, J. A. J. Chromatogr., B 1998, 711, 285-293.

18

3.5 Process proposal

Adsorption of ILs onto AC is **effective** at low concentrations.

Adsorption **INCREASES** with the alkyl side chain length increase for both series studied.

Aqueous Biphasic Systems are a potential asset for the ILs Recovery. The recovery efficiencies obtained were always higher than 90%.

5. Future Work

PATh

Adsorption:

- Recovery of ILs from AC (acetone*)
- ✤ ≠ anion families
- $\bigstar \neq T e \neq Adsorbents$

ABS:

- Ionic exchange from the two salts
- ✤ ≠ salts with higher recovery efficiencies and low salt content

Acknowledgments

